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1.  INTRODUCTION 

In the mid 1950s four shell types,, exhibited unusual behavior that involved the movement of their 

interior parts (Boyer 1955a, 1955b; Roecker and Boyer 1957; Karpov and Bradley 1958). In 1977 a 

simple theory was developed to relate the motion of internal parts to the angular motion of the spinning 

projectile (Murphy 1977). This theory assumed a circular lateral motion of the internal component 

combined with a coning motion of its axis of symmetry. Both of these motions are at a coning frequency 

of the spinning shell. The frequency of the internal motion was assumed to be the fast frequency of the 

projectile's free angular motion, the amplitude was set by the available tolerances, and the phase of the 

motion was induced by internal friction. 

The theory predicted a destabilizing side moment and a spin-up moment equal to the product of the 

side moment and the magnitude of the projectile's angular motion. Later it was shown that this relation 

between side moment and spin moment is valid for any steady motion of an internal payload (Murphy 

1989). For 60° phase angles, all observed instabilities could be explained by the measured clearances and 

the measured despins of the unstable projectiles were in good quantitative agreement with the theory's 

prediction. 

The theory, however, made no attempt to predict the amplitude and phase of the internal motion. For 

a mass supported by an elastic internal beam, W. R. Chadwick (1975) did develop a complete theory for 

the combined motion of the internal mass and the projectile. Unfortunately, this work was marred by two 

errors in the proper treatment of beam damping, and his equations did not predict flight results. 

In this report,* we develop the correct equations of motion for the projectile and its internal, beam- 

supported mass. Using Chadwick's influence coefficients, we compute the elastic response of various 

beams with a proper expression for beam damping. The beams considered are forward-facing and 

rearward-facing cantilever beams, fixed-pinned beams, and fixed-fixed beams. 

The theory and associated computer runs show that the instabilities induced by beam-mounted masses 

are strongly controlled by beam elastic characteristics and, very importantly, the form and amplitude of 

* A shorter version of this report has appeared as an AIAA preprint (Murphy 1992). 
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the beam damping.   Small beam damping has little effect on projectile flight stability, but moderate 

damping can cause instability when the beam is sufficiently soft 

The inertia properties of the internal mass determine the relative importance of beam deflection or 

beam cant on projectile stability. Theory indicates design tradeoffs for beam characteristics and mass 

inertial properties. 

2.  EQUATIONS OF MOTION 

In Murphy (1977), the internal component is assumed to perform a known lateral and angular motion. 

In complex notation, the lateral motion is described in nonspinning coordinates by 

Yc + izc = {E> (1) 

and the angular motion is described by the component's axis of symmetry orientation angles with respect 

to the projectile's axis of symmetry: 

Ty + iYz = T. (2) 

The projectile's motion relative to its flight path is given by its angles of attack and sideslip in 

nonrolling coordinates: 

ß + iä = I. (3) 

These geometrical quantities are shown in Figures 1 and 2. The usual linear analysis yields the following 

equation for the projectile's motion: 

Itf - (Aq + iLx)| - (Aa + iApa)| - B£ E + Itc r - ipc Ixc T. (4) 

The angular motion of a solid projectile (E = T = 0) is usually described as the sum of two coning 

motions of the form 

1= I    K^, (5) 
j = l,2 

^^hi[i±f~^t 2It 
(6) 



Figure 1. X-Y coordinates for projectile and internal component; xc < 0. 

Figure 2. X-Z coordinates for projectile and internal component; xc < 0. 



LK
2 

S       =                 * (7) 8      41 A 
and 

KJ        J        2^It-Lx 

(8) 

Since the fast mode is usually the one adversely affected by payload motion, a simple one ■mode motion 

is assumed, and the internal component is assumed to perform constant-amplitude motion at the fast 

frequency. 

and 
(9) 

E-ee^1*^. (10) 

When equations 9-10 are substituted in equation 4, it can be shown that the frequency and damping 
of the fast mode are changed by the following amounts: 

-(j>,C, 
(11) 

and                                                               Ki(2It<h-Lx) 

M1=              ^ (12) 
K1C2It«t»1 -Lx) 

where 

Cj = By ycos <|>Y - B£ 4)j e cos 4>e 

Sj = By y sin §y - B£<j>j e sin 0£ 

BY = ^cPc - ^l 
- 

Be =I"cxcf- 
■ 
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y and e and their phase angles were estimated from available clearances and good engineering predictions 

were obtained. In this report, we will predict these quantities for a component mounted on an elastic 

beam. 

3.  COMPONENT EQUATIONS OF MOTION 

The lateral motion of an internal component can be described in a nonrolling coordinate system whose 

x-axis is aligned along the projectile's axis of symmetry. The angular velocity of these coordinates can 

be specified by 

Q = 9 + ix\r. 

The lateral motion of the component can be easily expressed in terms of the transverse components of the 

force and moment exerted by the beam on the component:* 

m„ «E + V 

and 

f \ 

% -iQ 

V J 

-ixcQ = Fyc + iFzc (13) 

Itc (f - iQ) - iPcIxc (f - iQ) = - (MyC + iMzc). (14) 

The elastic part of the beam force and moment can be computed by simple beam theory to be a linear 

function of E and r. For the coning motion of equations 9-10, 

Fyc + lFzcJelastic 
bulee1** tb^ve1** 

i$! 

and 

[Myc-MM^^ 1 =   ifb21«eei^ + b22YeiHei<,>1, :J elastic L   21 lL J 

(15) 

(16) 

* See Appendix A for derivation of Equations 13-14. Appendix B outlines the derivation of Table 1. 
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where b12 = b21 and the linear coefficients, bij5 can be computed for a variety of beam supports by 

taking the matrix inverse of the influence coefficients, a^, given in Table 1. 

The effect of beam damping can be approximated by linear terms in the derivatives of E and T. Since 

the beam is spinning with the projectile, these derivatives must be taken in projectile-fixed coordinates 

Table 1. Influence Coefficients for Various Beams 

Type anEI a21EI a^EI 

Fixed-fixed a3b3 
_a2b2(a-b) 

2(a + b)3 

ab(a2 + b2 - ab) 

(a + b)3 3(a + b)3 

Fixed-pinned a3b2(3a + 4b) 

12 (a + b)3 

a2b(2b2 - a2) 

4(a + b)3 

a(a3 + 4b3) 

4(a + b)3 

Pinned-fixed a2b3(4a + 3b) 

12(a + b)3 

ab2(b2- 2a2) 

4(a + b)3 

b(4a3 + b3) 

4(a + b)3 

Fixed-free a3 

3 
a2 

2 
a 

Free-fixed b3 

3 
_b2 

2 
b 

Pinned-pinned a2b2 ab(b - a) 
3(a + b) 

a2 + b2 - ab 
3(a + b) 3(a +b) 

that are spinning with respect to earth-fixed axes. A coning frequency <}> j in the nonspinning system 

would appear in a spinning system as $ l - p where p is the projectile spin. The beam damping can be 

inserted in equation (15) by replacing t^ by bn [l + i de (<j> 1 - p) p -1 j and in equation (16) by replacing 

t^ty b22 [l + idy (<^i -P)P-1]- 

If the small effect of the lift force is neglected, 

S=iQ- (17) 



Equations 13-16 can be combined to yield 

<j>2mc +bn[l + ide(<j>1 -p)p-1]]fieei<l,E + b12Yei<!,Y = mcxc(^1)
2K1 (18) 

and 

b21«eei(t>E +   - <{>! By + b22[l + idy (^ - p)p-1] 

= -i^B-K^ 

ye i<Dr 

(19) 

When beam parameters, component inertia properties, and coning motion parameters are inserted in 

equations 18-19, amplitude and phase angles of the component motion can be determined. From these, 

the stability of the coning motion follows from equation 12. 

4. DISCUSSION 

To illustrate these results, we will consider an 8-in projectile with a particular rotationally symmetric 

internal component.   The appropriate physical and aerodynamic properties of this projectile and its 

component are given in Table 2. The nominal value of the beam's stiffness is given as El* = 

59,800 lb/ft2. In Figures 3 and 4, the projectile damping is plotted as a function of beam elasticity for 

all six possible beam types. When the beam stiffness is reduced to 10% of the Table 2 value, all beam 

types can cause flight instability. 

Table 2. Test Case Values 

a = 0.50 ft d = d£=da = 0.5 
b 

Itb 

=  1.16 ft 
= 0.240 slug/ft2 

= 2.306 slug/ft2 

El* 

Ixc 

= 59,800 lb/ft2 

= 0.130 slug-ft2 

= 0.700 slug-ft2 

mb = 20 slug mc = 2.6 slug 
Q =  8in xc = -0.3 ft 
Cma = 5 ^10 = -0.33 1/s 

c„a =  1.8 P = 637rad/s 
(X 

P = 0.002 slug/ft3 V =  1,200 ft/s 



1.5 

X, 

0.5 

.FIXED - FREE 

FIXED - FIXED 

-0. 

FREE - FIXED 

0.2 0.4 0.6 0.8 

Ei/fl* 

Figure 3. Projectile damping as a function of beam stiffness for three nonpinned beam tvnes. 

2   n 

1.5 

0.5 
FIXED - PINNED 

PINNED - FIXED 

PINNED - PINNED 

-0.5 
0.2 0.4 0.6 

FJ/f|* 
0.8 

Figure 4. Projectile damping as a function of beam stiffness for three pinned beam types. 



In Figure 5, the size of the component motion is plotted as a function of beam stiffness for the fixed- 

fixed beam. For small coning motion (K: < 0.1), this motion is quite small and only the relatively large 

value assigned to \ causes this motion to induce flight instability. 

0.10 

0.08 

0.06 

0.04. 

0.02 

0.00 

£/K,---. 

0.2 0.4 C.6 

tl/tl* 
o.s 

Figure 5. Component cant and deflection as functions of beam stiffness for a fixed-fixed beam. 

Figure 6 shows the beam damping effect on flight stability for the fixed-fixed beam with Ei/El * = 

0.1. The nominal value of d = 0.5 is shown for the equal damping curve d£ = dy = d. The other two 

curves consider the solo effects of continued damping (dy) and of deflection damping (dE), respectively. 

Clearly, cant damping can have a greater adverse effect, and 0.5 is the worst value for d£ = dy. 

0.2 

0.1 

.Table 2 value 

M       0.0 

-0.1 

-0.2 

-0.3 

-0.4 

_ de = dr = d/^ 
^d£ = 0, d7 = d ^ 

/ ....... 

1                  1 

■'""   d£ = d, dy = 0 

i 

0.2 0.8 0.4-    ' 0.6 

d 
Figure 6. Projectile damping as a function of beam damping for a fixed-fixed beam and three types of 

damping; EI/EI* = 0.1. 



Intuitively, one might think the instabilities shown by Figures 3 and 4 arc due to reducing the natural 

frequency of the beam to the coning frequency of the projectile. In Figure 7, the natural beam frequency, 

(De, of the three beam types of Figure 3 is computed, and the projectile damping is plotted as a function 

of^/ofe For the fixed-fixed beam, instability occurs when the coning frequency is only 10% of the beam 
frequency! 

2   r 

1.5 

A1   (1/s) 

0.5 

0 

-0.5 
0 

/ FIXED- FREE 

FIXED - FIXED 

FREE - FIXED 

0.3 0.2 0.4 0.6 

Figure 7" Projectile damping as function of coning frequency for three nonninned beam tvnes 

5.  CONCLUSIONS 

(1) The steady-state motion of internal mass on an elastic beam can be computed. 

(2) For appropriate values of beam damping, flight instabilities can be predicted. 

(3) These instabilities can occur for frequencies less than 10% of the beam natural frequency. 
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The complete projectile is assumed to consist of a body with mass mb and an internal component of 

mass mc mounted on an elastic massless beam. The total mass of the projectile is m = mc + mb. The 

center of mass (CM) of the internal component is located a distance xc from the CM of the projectile, and 

the CM of the body is a distance xb from the CM of the projectile (mb xb + mc xc = 0). If Itt is the 

transverse moment of inertia of the component relative to its CM and 1^ is the transverse moment of 

inertia of the body relative to its CM, then It, the transverse moment of inertia of the projectile relative 

to its CM, is given by 

lt = Jtb + mbxb + Jtc + mcxc- (A'!) 

The projectile's axis of symmetry can be located relative to fixed axes by its pitch and yaw angles, 

8 and *P, and its orientation relative to the velocity vector can be defined by its angles of attack and side- 

slip,* a and ß. The internal component is assumed to be a cylinder or disk whose axis is located 

relative to the projectile's axis by the angles yy and yz. The transverse displacement of the component CM 

relative to the body's axis of symmetry is specified by the displacements yc and zc. All these geometrical 

quantities are shown in Figures 1 and 2. 

The projectile has lateral aerodynamic forces and moments acting on it, represented by Fy, Fz and My, 

M^ respectively. The elastic beam exerts forces and moments on the internal component when it is 

deflected; these are represented by Fyc, Fzc, and MyC, Mzc, respectively. For simplicity, aerodynamic drag 

is neglected and all angles are assumed to be small. 

The equations of motion of the projectile body and internal component are as follows: 

mblV(ß + \]/) +xb\|/J = F y-F (A-2) 

* The tilde superscripts are used to indicate that these angles are measured in nonspinning coordinates and not the usual missile- 
fixed coordinates. 

15 



mb[V(S-e)-xb9] =FZ-FZC,                                       (A-3) 

\b 6 + Pb !xb V = My - MyC + xb Fz + (xc - xb) Fzc,                          (A-4) 

Jtb V " Pb I*b 6 = Mz - M^ - xb Fy - (xc - xb) Fyc,                         (A-5) 

mc yc + V(ß + v) +xc v] = Fyc,                                         (A-6) 

mc zc + v(d - e) - xc e = Fzc                                           (A-7) 

Jtc (ö  - fz)  + Pc Ixc (V + Yy )  = MyC ,                                                    (A-8) 

and 

he (v + Yy) " Pc Ixc (ö - Yz) = Mzc ,                                      (A-9) 

where 1^ and Ixc are the axial moments of inertia of the body and component, respectively. 

The transverse force on the component can be eliminated between equations (A-2MA-3) and 

(A-6HA-7), and complex variables can be introduced to yield the following force equation for the 

projectile: 

mV (f - i Q) = Fy + i Fz - mc«E,                                       (A-10) 

16 



where 

| = ß +i«, 

Q = 8 + iy, 

and 

The external aerodynamic force can be approximated by the linear normal force, and the small component 

inertia force can be neglected to yield the simple relation 

mv(| -iQ) = -FN|, (A-ll) 

where 

FN = (l/2)pV2SCNa. 

Equations (A-2)-(A-9) can now be combined to eliminate the transverse forces and moments acting 

on the internal component. The resulting moment equation for the projectile is 

It Q - iLxQ = M   + iMz - iBeE - iltcf - pcIxcf\ (A-12) 

where 
Lx = Pb hb + pc W 

B£ = mc xc i, 

and 

r = yy + iyz. 

17 



The external aerodynamic moment can be replaced by the usual linear moment expansion and Q can be 

eliminated by the use of equation (A-11) to yield the following form of the projectile moment equation: 

Jt f - K + iLx) l ~ {Aa + * *pa)i ~ V£Z - ltcT + i pcIxc r = 0,        (A-13) 

where 

Aq = (1/2) pS«z V 

Aa = (l/2)pS«V2CM  , 

CMq 
+ CMä ~ kt   CNa 

a 

and 

Apa = (l/2)pSfi2Vpb CMPa 
+ K CNa 

The  complex   equations   for  the  motion  of the  internal   component   can  be  written  from 

equations (A-6HA-9) as follows: 

m. 

' f ^ 

1 E + V \- -iQ -ixcQ 

V ) _ 

= Fyc +iFzc (A-14) 

and 

Itc (f - iQ) - ipcIxc (f - iQ) = - i (Myc + i Mzc). (A-15) 

The motion of the internal component is determined by equations (A-11), (A-14), and (A-15) when the 

component forces and moments are specified and the projectile motion is known. 

18 



APPENDIX B: 

BEAM INFLUENCE COEFFICIENTS 

19 



INTENTIONALLY LEFT BLANK. 

20 



If a mass is mounted on an elastic beam and the beam is deformed, the beam exerts a force and 

moment on the mass. The components of this force and moment appear in equations (A-14) and (A-15) 

and it is necessary to express these quantities as functions of the displacement (£y, ez) and rotation (yy, 

yz) of the mass. For an elastic beam, these are linear relations: 

Fyc
+iFzc=bi1«E+b12r (B-l) 

and 

Myc + iMzc = i(b21CE + b22r), (B-2) 

where b12 = b21. 

For simple beam theory, it is easy to express the displacement and rotation as functions of applied 

force and moment (Fa, Ma). In the xy plane, this yields the following linear relations in terms of the beam 

influence coefficients: 

«ey-a11Fa + a12Ma (B-3) 

and 

Yy = a21Fa + a22Ma- C*"4) 

Fa and Ma are the negatives of the corresponding force and moment on the internal component (Fy , Mz<;). 

Thus, by equations (B-l) to (B-4), the by's are related to the a^'s as follows: 

(B-5) 

and 

bn = 

b21 = b12 = 

a12 

b22 = 
"all 

D 

D = a22 all " (hi)2 

(B-6) 

(B-7) 

(B-8) 

21 



We will assume the beam has a length a + b; the internal component and its associated applied force and 

moment are located a distance a from the forward end of the beam and a distance b from its rear end. 

The influence coefficients can be computed for various beams by means of the well-known elastic 

beam equation: 

1 
El£y=-Mz(x), (B-9) 

dx2 

where 

Mz = -xFyo +Mzo o<x<a 

= -xFyo +MZ0 - (x-a)Fa + Ma        a<x<a+b (B-10) 

= _Mzl x = a + b 

and 

Fyo+Fyl = -Fa' (B-ll) 

where E is Young's modulus, I is the area moment of inertia, (Mzo, Mzl) and (Fyo, F,) are the moments 

and forces exerted on the ends of the beam. 

Three possible constraints are considered at each end of the beam. At the front end, x = o, these are: 

(a) free Fyo = 0 ;      M^ = 0 

(b) pinned yQ  = 0 

and 

(c) fixed y0  = 0  ;     dy(0) = 0. 
dx 

22 



Similar conditions can be assigned to the rear end, x = a + b. The values of the influence coefficients are 

given in Table 1 for six combinations of end conditions: fixed-fixed, fixed-pinned, pinned-fixed, fixed- 

free, free-fixed, and pinned-pinned. The construction of this table can be illustrated by considering the 

rearward-facing cantilever case. For this case, Fyo = -Fa, M^ = -Ma - aFa (i.e., the beam is fixed-free). 

Equation (B-9) can be integrated twice to yield 

gj   dy = _ x(x-2a)       + Q<x<a 

dx 2 a      "a 

2 
JL Fa + aMa a<x<a+b (B"12) 

2      a a 

and 

Iy =     x   (x   3a) Fa+i_Ma o < x < a 3 6 a       2      a 

*2(3x-a)   F. + 
a(2x~a) M. a< x < a + b. (B-13) 

a       ö       a 

At x = a, equations (B-12) and (B-13) become 

and 

Ely(a) = EI«ey = *L Fa + a   Ma (B-14) 

EIdy(a) =EIyv = —Fa + aMa. (B-15) 
dx y      2    a a 

The above coefficients of Fa and Ma are precisely those given by the fixed-free entries in Table 1. 

The other coefficients can be computed in a similar manner. 
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LIST OF SYMBOLS 

A^ (l/2)pS^VPb[CMpa + ka
2CNa] 

Aq (l/2)pS?V[CM   + CM. -kt
2CNJ 

XP, a 

Aa (l/2)pS«V2CMi a 

a distance from the forward end of the beam to the internal component 

ay beam influence coefficients; Table 1 

BY JxcPc-^^i 

BE mc xc t 

b distance from the rear end of the beam to the internal component 

by beam coefficients derived from the a^ 's. 

CM Magnus moment coefficient 

^M   + C-MA sum of ^ damping moment coefficients 

Cw static moment coefficient 

Cvr normal force coefficient 

CM center of mass 

(L nondimensional beam damping orientation coefficient, equation (19) 

dE nondimensional beam damping displacement coefficient, equation (18) 

E (yc + izc)/« 

E Young's modulus 

F  , F^ lateral components of the force exerted by the elastic beam on the 
component 
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Ix, It axial and transverse moments of inertia of the total projectile relative to its CM 

IXb- Itb axial and transverse moments of inertia of the body relative to its CM 

Ixc. Ifc axial and transverse moments of inertia of the component relative to its CM 

*j III 

1^ V^/111« ' ^ axial radius of gyration 

Iq ylt/m4 , the transverse radius of gyration 

Lx Pb !xb + Pc Jxc 

t reference length 

MyC, M^ lateral components of the moment exerted by the elastic beam on the 
component 

m mb + mc 

mb mass of the body 

mc mass of the component 

p projectile spin rate 

pb body spin rate 

pc component spin rate 

Q 9 + iy 

S KP/4, reference area 

sg gyroscopic stability factor, equation (7) 

t time 

V projectile velocity 

x axial distance, measured positive rearward, where x = 0 at the forward end 
of the beam, x = a at the component, and x = a + b at the rear end of the 
beam 

xb distance from the CM of the (body + component) to the CM of the body 
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xc distance from the CM of the (body + component) to the CM of the 
component, where mbxb + mcxc = 0 

y   zc transverse displacements of the component CM relative to the body's axis 
of symmetry 

a, ß the projectile's angles of attack and sideslip in a nonrolling system 

r Yy + i Yz 

Y |r| 

Y   yz orientation angles defining the component axis of symmetry with respect to the 
projectile axis of symmetry 

8 |E| 

9 projectile pitch rate 

A,x KJ/KJ, a damping coefficient 

% ß + i a 

p air density 

♦l polar angle of \ 

♦l fast coning frequency 

*Y r phase angle, equation (9) 

♦e E phase angle, equation (10) 

V projectile yaw rate 

°>E natural frequency of beam 

C) d( )/dt 
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